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1. Introduction

It is common wisdom that a noncommutative extension of a quantum field theory can

be realized by replacing the standard commutative product with the Groenewald-Moyal

star product [1, 2]. When applied to gauge theories, this approach should worry about

the fate of all the symmetries which, in the commutative case, are taken as the very

definition of the model and which allow a complete discussion of its renormalizability by

analyzing the integrated cohomology of the BRS operator in the ghost charge zero sector

(stability) and ghost charge one sector (anomaly). We would like to assume this point of

view from the very beginning and consider a noncommutative quantum gauge field model

to be defined by its symmetries, locality and power counting. Of course the presence of

the θµν parameter with inverse square mass dimension deeply affects the results of the

cohomology analysis; in a previous investigation [3, 4], where we have applied this method

to the two dimensional BF model whose action is expanded in power series of θ, we found

it to be unstable already at first order in θ and also showed that the Groenewald-Moyal

extension is not the general solution of the symmetry constraints. In this paper we discuss

in the same framework the noncommutative Chern-Simons model, whose action has a

necessarily analytic expansion in the θ parameter. We are able to carry out the analysis

to all orders and the Chern-Simons model turns out to be much more robust than the BF

one with respect to noncommutative deformations. Indeed, the model is unstable in the

sense that to any fixed order in θ, the classical action acquires new contributions with new

free parameters, but these contributions never belong to the BRS cohomology, i.e. are BRS

variations. Even more important, the theory stays anomaly free to all orders. Now, the

absence of anomaly implies that the symmetry is maintained in the full noncommutative

extension and the fact that the new contributions to the action are BRS trivial leads to the
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consideration that the noncommutative model can still be regarded as “renormalizable” in a

wider sense [5, 6], since all new parameters belong to the nonphysical sector of the theory.

Needless to say, the Groenewald-Moyal star product does not coincide with the general

extension we propose here. The plan of the paper is as follows: in section 2 we briefly

recall the defining symmetries of the classical model, the noncommutative Groenewald-

Moyal extension and set up the tools to analyze the quantum theory to all orders in θ.

Section 3 is devoted to the explicit discussion of the stability and anomaly problem up to

the second order in θ; the computation, whose feasibility relies on a previous result on the

general solution of the linear vector supersymmetry [7], gives us a hint of what might be the

all order result, which is proven in detail in the appendix. Our conclusive considerations

are collected in section 4.

2. The classical model

The ordinary, commutative, Chern-Simons theory reads

SCS =
k

2
Tr

∫
d3x ǫµνρ

(
Aµ∂νAρ − i

2

3
AµAνAρ

)
, (2.1)

where Aµ ≡ T aAa
µ and the trace must be done on the group generators, which, for SU(n),

obey

Tr (T aT b) = δab (2.2)[
T a, T b

]
= ifabcT c (2.3)

{T a, T b} = dabcT c +
1

n
δab (2.4)

The action (2.1) is invariant under the nilpotent BRS transformations

sAa
µ = −(Dµc)a ≡ −(∂µca + fabcAb

µcc)

sca = +
1

2
fabccbcc (2.5)

sc̄a = ba

sba = 0 ,

where the fields ca(x), c̄a(x) and ba(x) represent ghost, antighost and Lagrange multiplier,

respectively, and belong to the adjoint representation of the gauge group.

The gauge fixing term is

Sgf = s

∫
d3x c̄a∂µAa

µ

=

∫
d3x (ba∂Aa + c̄a∂µ(Dµc)a) . (2.6)

Notice that, in three dimensions the gauge parameter being massive, the Landau gauge

choice is mandatory.
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Once gauge fixed, the action

S = SCS + Sgf (2.7)

is invariant under an additional vector symmetry [8]

δµS = 0 , (2.8)

where

δµAa
ν =

1

k
ǫµνρ∂

ρc̄a

δµca = −Aa
µ (2.9)

δµc̄a = 0

δµba = ∂µc̄a .

The vector symmetry (2.9) is peculiar to all topological field theories, and the algebra

formed with the BRS operator is

s2 = 0 (2.10)

{δµ, δν} = 0 (2.11)

{s, δµ} = ∂µ + eqs of motion. (2.12)

This algebraic structure, like the ordinary global supersymmetry, closes on translations,

and plays a crucial role in the proof of finiteness of Chern-Simons theory, and of topological

quantum field theories in general [9, 10].

Besides BRS symmetry (2.5) and supersymmetry (2.9), the action (2.7) shares with

all gauge field theories built in the Landau gauge, the ghost equation [11]
∫

d3x

(
δ

δca
+ fabcc̄b δ

δbc

)
S ≡ GaS = 0 . (2.13)

In order to proceed towards the noncommutative extension of Chern-Simons theory, it

is customary to deform the ordinary product between quantum fields, into the Groenewald

- Moyal “star” product [1, 2]

φ(x)ψ(x) −→ φ(x) ∗ ψ(x) ≡ lim
y→x

exp(
i

2
θµν∂x

µ∂y
ν ) φ(x)ψ(y) , (2.14)

where θµν is a rank-two antisymmetric matrix which controls the noncommutative nature

of spacetime coordinates

[xµ, xν ] = iθµν . (2.15)

Consequently, the noncommutative Chern-Simons (NCCS) action reads

SNCCS =
k

2
Tr

∫
d3x ǫµνρ

(
Aµ ∗ ∂νAρ − i

2

3
Aµ ∗ Aν ∗ Aρ

)
. (2.16)

The action (2.16) can be fully expanded in power series of θ

SNCCS =

∞∑

n=0

S
(n)
NCCS , (2.17)
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where

S
(0)
NCCS = S (2.18)

S
(1)
NCCS = θαβSαβ (2.19)

S
(2)
NCCS = θαβθγδSαβγδ , (2.20)

and so on at higher orders. Up to second order in θ, S is given by eq. (2.7), and

Sαβ =
1

2
dabc

∫
d3x ∂αAa

µ

(
1

6
εµνρ∂βAb

νA
c
ρ − ∂µc̄b∂βcc

)
(2.21)

Sαβγδ = −
1

8
fabc

∫
d3x ∂αγAa

µ

(
1

6
εµνρ∂βδA

b
νAc

ρ + ∂µc̄b∂βδc
c

)
(2.22)

Accordingly, always up to O(θ2), the noncommutative BRS symmetry is

s(θ)Aa
µ = sAa

µ −
1

2
θαβdabc∂αAb

µ∂βcc +
1

8
θαβθγδfabc∂αγAb

µ∂βδc
c

s(θ)ca = sca +
1

4
θαβdabc∂αcb∂βcc −

1

16
θαβθγδfabc∂αγcb∂βδc

c (2.23)

s(θ)c̄a = sc̄a

s(θ)ba = sba .

On the other hand, the supersymmetry δµ, being linear in the quantum fields, is not affected

by the noncommutative extension

δ(θ)
µ = δµ . (2.24)

As a nontrivial property, it can be verified that the noncommutative deformation shares

with the ordinary theory the symmetries

s(θ)SNCCS = 0 (2.25)

δµSNCCS = 0 (2.26)

GaSNCCS = 0 (2.27)

and the algebraic structure

(
s(θ)

)2
= 0 (2.28)

{δµ, δν} = 0 (2.29)

{s(θ), δµ} = ∂µ + eqs of motion . (2.30)

Two remarks are in order.

The first concerns the choice of the gauge group of noncommutative gauge field theories,

which is known that it should be U(n) [1, 2]. The reason, is that the gauge group U(n) is

closed under the star product while SU(n), for instance, is not. This restriction does not

reveal itself in the noncommutative action, because of the trace which is done on the group

generators, which are traceless. But it is evident when composite operators are considered,
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like s(θ)Aµ and s(θ)c in the BRS transformations. These expressions, indeed, involve the

anticommutator (2.4), which does not form an algebra, due to the central term 1
n
δab, and

are meaningful only for U(n) gauge groups, for which the central term disappears

U(n) : {T a, T b} = dabcT c . (2.31)

More subtle is the necessity of U(n) gauge groups to verify, for instance, the nilpotency of

the noncommutative BRS operator s(θ) (2.28), order by order in θ. Nilpotency is achieved

only thanks to the following nontrivial relation between structure constants and completely

symmetric tensors

fabpf cdp = dacpdbdp − dbcpdadp (2.32)

which holds for U(n) groups only [12].

The second remark concerns the analyticity of the theory. The quantum action ΓNCCS

does not have any non-analytic sector in θ. Indeed, let us suppose that the NCCS quantum

action ΓNCCS contains a sector which can be expanded in negative powers of θ

ΓNCCS|non analytic =

∞∑

n=1

1

θn
Γ

(n)
NCCS . (2.33)

recalling that 1
θ

has mass dimensions +2, power counting implies that the mass dimension

of Γ
(n)
NCCS is

dim (Γ
(n)
NCCS) = 3 − 2n , (2.34)

which, of course, must be a non-negative quantity. Thus, at most there is only one possible

term in the non-analytic expansion (2.33)

ΓNCCS|non analytic =
1

θ
Γ

(1)
NCCS , (2.35)

but no such Γ
(1)
NCCS, with mass dimension +1, can be constructed which is a color singlet

and gauge invariant.

Hence, the θ-expansion of NCCS theory does not admit a non-analytical sector.

3. The quantum extension

Once we got rid of the non-analytical sector, the counterterm Σ
(θ)
c can be fully expanded

in power series of θ:

Σ(θ)
c =

∞∑

n=0

θn · Σ(n)
c (3.1)

In (3.1), the “dot” product denotes all possible ways to contract Lorentz indices in order

to form a scalar quantity. For example

θ · Σ(1)
c ≡ θµνΣ

(1)µν (3.2)

θ2 · Σ(2)
c ≡ θµνθ

µνΣ(2) + θµλθλ
νΣ(2)µν + θµνθρσΣµνρσ (3.3)

– 5 –



J
H
E
P
1
0
(
2
0
0
7
)
0
3
8

In order that the action is stable under radiative corrections, the counterterm must

obey the following constraints1

GaΣ(θ)
c = 0 (3.4)

s(θ)Σ(θ)
c = 0 (3.5)

δµΣ(θ)
c = 0 (3.6)

Recalling that the noncommutative BRS operator can be θ-expanded

s(θ) = s(0) + s(1) + s(2) + · · · (3.7)

order by order in θ, the stability equation (3.5) reads, up to O(θ2)

O(θ0) : s(0)Σ(0)
c = 0 (3.8)

O(θ1) : s(0)Σ(1)
c + s(1)Σ(0)

c = 0 (3.9)

O(θ2) : s(0)Σ(2)
c + s(1)Σ(1)

c + s(2)Σ(0)
c = 0 (3.10)

while the ghost equation (3.4) and the supersymmetry constraint (3.6), which do not mix

the θ-sectors, hold at each order

GaΣ(n)
c = 0 (3.11)

δµΣ(n)
c = 0 . (3.12)

For the analysis of the quantum extension of the theory, it is extremely helpful to know

the general solution of the supersymmetry equation

δµXp
q = 0 , (3.13)

where p and q denote respectively mass dimension and ghost number of the functional X.

In [7], it has been proven that the most general solution of (3.13) is

Xp
q = εµνρδµδνδρX

p−3
q+3 ≡ δ3X

p−3
q+3 . (3.14)

Now, Σ
(0)
c is a local integrated functional with mass dimensions +3 and ghost number 0.

According to eq. (3.12) and eq. (3.14), it must be written

Σ(0)
c = δ3X0

3 . (3.15)

Since the ghost operator Ga (2.13) anticommutes with both the BRS and the supersym-

metry operators

{Ga, s(θ)} = {Ga, δµ} = 0 , (3.16)

1We omit to introduce external fields to define the nonlinear BRS variations in (2.23). It is readily

seen indeed, that their presence, not altering at all our results, would make the treatment much heavier.

Therefore, without loss of generality, also at the quantum level we shall continue to deal with the BRS

operator, and not with the Slavnov-Taylor identity [13].
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it must also be

GaX0
3 = 0 , (3.17)

but no functional with the correct quantum numbers exists, hence

X0
3 = 0 , (3.18)

and

Σ(0)
c = 0 . (3.19)

We recovered here in a few lines a result which is already known, concerning the finiteness

of commutative Chern-Simons theory [14, 15]. This same technique easily leads us to get

new results at higher orders in θ.

Taking into account (3.19), at the first order in θ, Σ
(1)
c must obey

s(0)Σ(1)
c = 0 (3.20)

GaΣ(1)
c = 0 (3.21)

δαΣ(1)
c = 0 (3.22)

From eq. (3.22), we have

Σ(1)
c = δ3Σdim=2

ΦΠ=3 , (3.23)

since, in order that θ · Σ
(1)
c has mass dimension +3, Σ

(1)
c must have dimension +5. In

general

dim(Σ(n)
c ) = 3 + 2n . (3.24)

The only possible term, satisfying also the ghost condition (3.21), is

Σ2
3µν =

∫
d3x dabcca∂µcb∂νc

c , (3.25)

which is not BRS invariant

s(0)Σ2
3µν 6= 0 , (3.26)

and therefore also

s(0)δΣ(1)
µν 6= 0 , (3.27)

since, on integrated functionals,

{s(0), δ} = 0 . (3.28)

Hence, Σ
(1)
µν is ruled out by the symmetry constraints, and

Σ(1)
c = 0 . (3.29)

Therefore, the NCCS theory, at least at first order in θ, not only is stable under radia-

tive corrections, but, more than that, keeps the property of finiteness displayed by the

commutative theory.
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At the next order in θ, taking into account the previous results Σ
(0)
c = Σ

(1)
c = 0, the

constraints on the counterterm become

s(0)Σ(2)
c = 0 (3.30)

GaΣ(2)
c = 0 (3.31)

δµΣ(2)
c = 0 (3.32)

Again, the most general solution of the supersymmetry condition (3.32), is

Σ(2)
c = δ3Σdim=4

ΦΠ=3 . (3.33)

The situation here is a bit more involved: the most general O(θ2) candidate satisfying the

ghost equation (3.31) and the supersymmetry condition (3.32), turns out to be

θ2 · Σ(2)
c = δ3

(
θ2 · Σ4

3

)
= δ3

∫
d3x

(
θµνθµνΣ + θµλθν

λΣµν + θµνθρσΣµνρσ

)
(3.34)

where

Σ =

∫
d3x

(
T

[ab]cd
1 caρcb

ρc
cσAd

σ + α1f
abccaρσcb

ρc
c
σ

)
(3.35)

Σµν =

∫
d3x

(
T

[ab]cd
2 ca

µcb
νc

cσAd
σ + T

[ab]cd
3 caρcb

ρc
c
µAd

ν+

+(α2d
abc + α3f

abc)ca
µσcb

νccσ
)

(3.36)

Σµνρσ =

∫
d3x

(
T

(ab)cd
4 ca

µcb
νcc

ρA
d
σ + α4f

abcca
µρc

b
νc

c
σ

)
, (3.37)

where ca
µ(x) ≡ ∂µca(x), αi are constants and T abcd

i are constant invariant tensors. Square

and round brackets mean antisymmetrization and symmetrization of color indices, respec-

tively.

The s(0) operator, which does not depend on θ, does not mix the three sectors which

form θ2 · Σ
(2)
c , hence each of them can be studied separately

s(0)Σ = s(0)Σµν = s(0)Σµνρσ = 0 (3.38)

where again we used eq. (3.28).

A careful analysis of the above BRS conditions leads to the following relations between

the free parameters

sector θµνθ
µν

T
[ab]cd
1 − T

[ab]dc
1 = α1f

abpfpcd (3.39)

T
[ab]cd
1 + T

[ab]dc
1 ≡ T

[ab](cd)
1 : undetermined (3.40)

sector θ
λ
µθνλ

T
[ab][cd]
2 + T

[cd][ab]
3 −

α2

4

(
dpbdfpac − dpadfpbc − dpbcfpad + dpacfpbd

)

−
α3

2
fabpfpcd = 0 (3.41)

T
[ab](cd)
2 , T

[ab](cd)
3 : undetermined (3.42)
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sector θµνθρσ

T
(ab)cd
4 + T

(ab)dc
4 = 3α4d

abpdpcd (3.43)

T
(ab)cd
4 − T

(ab)dc
4 ≡ T

(ab)[cd]
4 : undetermined . (3.44)

Notice that, in order to write eq. (3.43), we used the relation (2.32), which holds only

for U(n) groups.

The three terms which form the counterterm (3.34) are then

Σ =

∫
d3x

((
α1

2
fabpfpcd + T

[ab](cd)
1

)
caρcb

ρc
cσAd

σ + α1f
abccaρσcb

ρc
c
σ

)
(3.45)

Σµν =

∫
d3x

(
T

[ab]cd
2 ca

µcb
νc

cσAd
σ + T

[ab]cd
3 caρcb

ρc
c
µAd

ν + (α2d
abc + α3f

abc)ca
µσcb

νc
cσ

)
(3.46)

Σµνρσ =

∫
d3x

((
3

2
α4d

abpdpcd + T
(ab)[cd]
4

)
ca
µcb

νc
c
ρA

d
σ + α4f

abcca
µρc

b
νc

c
σ

)
. (3.47)

The noncommutative theory, hence, starting from order O(θ2), not only breaks finiteness,

but it is not even stable under radiative corrections, as the counterterm cannot be reab-

sorbed by a renormalization of field and parameter of the classical theory, nor it can be

expressed in terms of the Groenewald-Moyal product.

Nonetheless, we verified that, at least at O(θ2), the above nine-fold (as many are

the free parameters) instability belongs to the nonphysical sector of the theory, since the

unstable counterterm can be written as an exact BRS cocycle

θ2 · Σ(2)
c = s(0)δ3

∫
d3x

(
θµνθ

µνΣ̂ + θµλθν
λΣ̂µν + θµνθρσΣ̂µνρσ

)
(3.48)

where

Σ̂ =

∫
d3x

(
α1

2
fabccaρcb

ρ∂Ac −
1

2
T

[ab](cd)
1 caρcb

ρA
cσAd

σ

)
(3.49)

Σ̂µν = −

∫
d3x

(
(α2d

abc + α3f
abc)Aaρcb

µρc
c
ν − T

[ab][cd]
3 caρAb

ρc
c
µAd

ν (3.50)

+

(
α2

4
fabpdpcd +

1

2
T

[ab](cd)
2

)
ca
µcb

νAcρAd
ρ +

1

2
T

[ab](cd)
3 caρcb

ρA
c
µAd

ν

)

Σ̂µνρσ =

∫
d3x

(
α4f

abcca
νcb

ρ∂µAc
σ −

1

2
T

(ab)[cd]
4 ca

µcb
νAc

ρA
d
σ

)
(3.51)

Notice that, in order to write the counterterm as an exact BRS cocycle, we had to use the

relation (3.41), which, although not attractive, turns out to be important to get this result.

Hence, we found that, till order O(θ2), the counterterm can be written as

Σ(2)
c = s(θ)δ3Σdim=0

ΦΠ=2

∣∣∣
O(θ2)

, (3.52)

where Σ0
2 is a generic power series in θ, which depends on the ghost field ca(x) only if

differentiated. In the appendix, we show that the integrated cohomology of the BRS
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operator s(θ) in the ghost sectors 0 and +1 is trivial, and hence the most general solution

of the BRS constraint (3.5) is

Σ(θ)
c = s(θ)Σ̂ . (3.53)

This result, together with eq.(3.14) on the solution of the supersymmetry condition, leads

us to conclude that, to all orders in ~ and θ, the most general counterterm of the NCCS

theory is indeed of the form (3.52)

Σ(θ)
c = s(θ)δ3Σdim=0

ΦΠ=2 . (3.54)

We shall comment on this in the Conclusions.

For what concerns anomaly, analogous results hold. The noncommutative anomaly

A(θ), which has mass dimensions +3 and ghost number +1, must satisfy the same con-

straints as the counterterm

GaA(θ) = 0 (3.55)

δµA
(θ) = 0 (3.56)

s(θ)A(θ) =

(
∞∑

n=0

θn · s(n)

)(
∞∑

m=0

θm · A(m)

)
= 0 , (3.57)

and A(θ) must be closed but not exact

A(θ) 6= s(θ)Â . (3.58)

The first two conditions (3.55) and (3.56) are solved by

A(θ) = δ3 Adim=0
ΦΠ=4 , (3.59)

and A0
4 is a local integrated functional depending on the ghost field only if differentiated.

The BRS condition (3.57), up to second order in θ, reads

O(θ0) : s(0)A(0) = 0 (3.60)

O(θ1) : s(0)A(1) + s(1)A(0) = 0 (3.61)

O(θ2) : s(0)A(2) + s(1)A(1) + s(2)A(0) = 0 . (3.62)

Now, A(0) and A(1) are ruled out by the solution (3.59): the commutative theory and its

noncommutative extension at O(θ) are not anomalous

A(0) = A(1) = 0 . (3.63)

At O(θ2) the most general solution of the constraints is

A(2) = δ3

∫
d3x

(
T

[ab][cd]
1 θµνθ

µνcaρcb
ρc

cσcd
σ + T

[ab][cd]
2 θλ

µθλνc
aµcbνccρcd

ρ+

+ T
[ab][cd]
3 θµνθρσcaµcbνccρcdσ

)
, (3.64)
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which can be expresses as an exact BRS cocycle

A(2) = s(0)δ3

∫
d3x

(
T

[ab][cd]
1 θµνθµνAaρcb

ρc
cσcd

σ + T
[ab][cd]
2 θλ

µθλνA
aµcbνccρcd

ρ+

+ T
[ab][cd]
3 θµνθρσAaµcbνccρcdσ

)
, (3.65)

and therefore, also at order O(θ)2, we explicitly checked that the noncommutative theory

is not anomalous.

In the appendix we show that this result holds to all orders in θ (and ~) as well

A(θ) = 0 . (3.66)

4. Conclusions

In this paper we considered the noncommutative Chern-Simons theory, expanded in the

noncommutativity parameter θµν . This expansion covers the whole theory, since we showed

that a non-analytical expansion is not allowed in this case. Therefore, we faced with a

double expansion: a quantum expansion in ~ and a noncommutative one in θµν .

We gave the most general expression for the counterterm in (3.54). Due to the pres-

ence of a generic functional Σ0
2, the counterterm depends on an infinite number of free

parameters, and, consequently, represents an infinite set of unstable radiative corrections

to the classical noncommutative action. Moreover, the counterterm cannot be written in

terms of the Groenewald-Moyal star product, which therefore turns out to be unstable

under radiative corrections. This seems to indicate that the quantum theory loses its link

to an underlying noncommutative structure of spacetime.

The optimistic counterpart, is that all the above considerations are confined to the

nonphysical sector of the quantum theory, which is also anomaly free. The bulk of the

theory maintains unaltered the good properties of the commutative one: the β function of

the noncommutative Chern-Simons coupling constant vanishes. We proved also that the

noncommutative parameter θ is a nonphysical coupling constant, since, like what happens

for gauge parameters, the fact that the counterterm is an exact BRS cocycle implies that

θµν
∂Γ(θ)

∂θµν
= s(θ)

∫
d3x ∆ · Γ(θ) , (4.1)

where Γ(θ) is the quantum noncommutative action, and ∆ · Γ(θ) is a quantum insertion.

These results suggest to infer that the noncommutative extension leads to a quantum

field theory which is consistent as long as the physical sector is concerned, while it is less

meaningful for the part of the theory which determines the anomalous dimensions.

We stress that the job has been greatly simplified in the case we considered: a three

dimensional topological field theory whose dependence on the noncommutative parameter is

completely analytic, and whose set of symmetries, in particular the vector supersymmetry,

allowed us to study thoroughly higher orders in both ~ and θ.

It would be extremely interesting to make analogous investigations in more physically

relevant quantum field theories, like for instance Yang-Mills, or also Maxwell theory.
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A. All orders results

A.1 Anomaly

We want to show that the general solution of the Wess-Zumino consistency condition on

the anomaly

s(θ)A(θ) = 0 (A.1)

is an exact BRS cocycle

A(θ) = s(θ)Â(θ) . (A.2)

Where Aθ and Âθ are integrated local functionals with mass dimension +3 and ghost

number +1, which can be expressed, like the BRS operator s(θ), as power series in θ

A(θ) =

∞∑

n=0

θn · A(n) (A.3)

s(θ) =
∞∑

n=0

θn · s(n) , (A.4)

where the same prescription as in (3.1) is adopted concerning the “dot” products.

The global equation (A.1), written on local forms, reads

s(θ)A3
1(x) + dA2

2(x) = 0 , (A.5)

where Ap
q(x) is a local p-form with ghost number q, and d is the exterior derivative.

In section 3 we showed that, up to second order in θ, it holds

(A3
1)

(2) =
(
s(θ)A3

0 + dA2
1

)(2)
= s(0)(A3

0)
(2) + s(1)(A3

0)
(1) + s(2)(A3

0)
(0) + d(A2

1)
(2) , (A.6)

and we neglect that, in particular, (A3
0)

(0) = (A3
0)

(1) = 0, due to the ghost equation.

The proof develops by induction: we assume that, up to order n − 1, it holds

(A3
1)

(n−1) =
(
s(θ)A3

0 + dA2
1

)(n−1)
(A.7)

= s(0)(A3
0)

(n−1) + s(1)(A3
0)

(n−2) + · · · + s(n−2)(A3
0)

(1)

+s(n−1)(A3
0)

(0) + d(A2
1)

(n−1) ,

and we want to show that, also at the next order,

(A3
1)

(n) =
(
s(θ)A3

0 + dA2
1

)(n)
(A.8)

= s(0)(A3
0)

(n) + s(1)(A3
0)

(n−1) + · · · + s(n−1)(A3
0)

(1)

+s(n)(A3
0)

(0) + d(A2
1)

(n) ,

where (A3
1)

(n) satisfies the equation (A.5) at the order O(θn), that is

s(0)(A3
1)

(n) + s(1)(A3
1)

(n−1) + · · · + s(n−1)(A3
1)

(1) + s(n)(A3
1)

(0) + d(A2
2)

(n) = 0 . (A.9)
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Substituting (A.7) in (A.9), and grouping the same θ-powers of A3
0, we get

s(0)(A3
1)

(n)+

s(1)s(0)(A3
0)

(n−1)+

((s(1))2 + s(2)s(0))(A3
0)

(n−2) + · · ·+ (A.10)

(s(1)s(n−2) + s(2)s(n−3) + · · · + s(n−2)s(1) + s(n−1)s(0))(A3
0)

(1)+

(s(1)s(n−1) + s(2)s(n−2) + · · · + s(n−1)s(1) + s(n)s(0))(A3
0)

(0)+

d(Â2
2)

(n) = 0 .

Using the nilpotency relation at O(θn)

s(0)s(n) + s(1)s(n−1) + · · · + s(n−1)s(1) + s(n)s(0) = 0 , (A.11)

the eq.(A.10) writes

s(0)
(
(A3

1)
(n) − s(1)(A3

0)
(n−1) − s(2)(A3

0)
(n−2) − · · · − s(n−1)(A3

0)
(1)−

s(n)(A3
0)

(0)
)

+ d(Â2
2)

(n) = 0 , (A.12)

which is an equation of cohomology modulo-d for the ordinary, commutative, nilpotent,

BRS operator s(0).

At this point, we proceed as usual, applying s(0) to both sides of (A.12), using the

anticommutation relation {s(0), d} = 0, the nilpotency d2 = 0, and the fact that the

cohomology of d is empty, and we get the following descent equations [13], which hold for

each O(θn)

s(0)(Â2
2)

(n) + d(A1
3)

(n) = 0 (A.13)

s(0)(A1
3)

(n) + d(A0
4)

(n) = 0 (A.14)

s(0)(A0
4)

(n) = 0 . (A.15)

The last equation (A.15) is a local cohomology equation for s(0), and we know that it is

formed by odd polynomials in the undifferentiated ghost ca(x) [13]

H(s(0)) = Podd(c) . (A.16)

Therefore, in the sector with even ghost number, the local cohomology of s(0) is empty,

and the solution of (A.15) is

(A0
4)

(n) = s(0)(A0
3)

(n) . (A.17)

Now, it is easy to mount the descent equations, remembering (A.16) and the fact that the

ghost field has vanishing mass dimensions. We get

(Â2
2)

(n) = s(0)(A2
1)

(n) + d(A1
2)

(n) , (A.18)

which, substituted in (A.12), transforms the problem of cohomology modulo-d into a prob-

lem of local cohomology

s(0)
(
(A3

1)
(n) − s(1)(A3

0)
(n−1) − · · · − s(n−1)(A3

0)
(1) − s(n)(A3

0)
(0) − d(A2

1)
(n)

)
= 0 , (A.19)
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which is solved by (A.8), which was our aim.

Therefore, at any order in θ, the solution of the Wess-Zumino consistency condition

(A.1) is only the trivial one (A.2), and the noncommutative Chern-Simons theory is not

anomalous.

A.2 Counterterm

The computation of the counterterm follows the same steps as the anomaly. We want to

solve the BRS constraint on the counterterm

s(θ)Σ(θ) = 0 , (A.20)

where Σ(θ) is a local integrated functional with mass dimensions +3 and ghost number 0,

which can be expanded in power series of θ

Σ(θ) =
∞∑

n=0

θn · Σ(n) . (A.21)

Written in terms of differential forms, (A.20) reads

s(θ)Σ3
0(x) + dΣ2

1(x) = 0 . (A.22)

In section 3 we showed that, up to second order in θ,

(Σ3
0)

(2) = (sθΣ3
−1 + dΣ2

0)
(2) . (A.23)

By induction, we suppose that, up to O(θ(n−1)),

(Σ3
0)

(n−1) =
(
s(θ)Σ3

−1 + dΣ2
0

)(n−1)
, (A.24)

and we want to show that, at the next order,

(Σ3
0)

(n) =
(
s(θ)Σ3

−1 + dΣ2
0

)(n)
, (A.25)

where (Σ3
0)

(n) is constrained to satisfy (A.22). Substituting (A.24) in (A.22), reordering

terms and using the nilpotency relation (A.11), in an analogous way to the anomaly case,

we land on a local cohomology modulo-d problem for the ordinary BRS operator s(0):

s(0)
(
(Σ3

0)
(n) − s(1)(Σ3

−1)
(n−1) − · · · − s(n)(Σ3

−1)
(0)

)
+ d(Σ̂2

1)
(n) = 0 , (A.26)

which yields the descent equations

s(0)(Σ̂2
1)

(n) + d(Σ1
2)

(n) = 0 (A.27)

s(0)(Σ1
2)

(n) + d(Σ0
3)

(n) = 0 (A.28)

s(0)(Σ0
3)

(n) = 0 . (A.29)

The last (A.29) is a local cohomology equation for the ordinary BRS operator, for which

the result (A.16) holds. This time the ghost charge of the 0-form (Σ0
3)

(n) is odd, but,
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since its mass dimension is 2n, the local cohomology also in this case is vanishing, since

no dimensionful quantities can be constructed with polynomials of undifferentiated ghost

fields. Hence

(Σ0
3)

(n) = s(0)(Σ0
2)

(n) . (A.30)

The descent equations are easily mounted, up to

(Σ̂2
1)

(n) = s(0)(Σ2
0)

(n) + d(Σ1
1)

(n) , (A.31)

which, substituted in (A.26), leads to a local cohomology problem, solved by (A.25).

Therefore, we have shown that the integrated cohomology of s(θ) is empty in all sectors

O(θn), with n ≥ 1.
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